Synthesis and cytotoxicity of a biotinylated CC-1065 analogue
نویسندگان
چکیده
BACKGROUND: The use of pretargeting technology for cancer imaging and treatment has made significant progress in the last few years. This approach takes advantage of the fact that biotin binds strongly to proteins avidin and streptavidin. Thus, a non-toxic tumor cell specific antibody is conjugated with avidin/streptavidin, and is administered to patients. After the antibody binds to tumor cells (usually 24--48 h); a clearing agent is given to remove the residual circulating antibodies in blood. Lastly, a toxic biotin-radioisotope conjugate is administered. Due to the small size of the biotin-radioisotope molecule and tight binding between biotin and avidin/streptavidin, the biotin-radioisotope rapidly binds to tumor cells with high specificity. CC-1065 (1) is one of a few classes of extremely potent antitumor agents, and a biotinalyted CBI-bearing CC-1065 analogue is a promising candidate to be used in the pretargeting technology to treat cancer. RESULTS: A biotinalyted CBI-bearing CC-1065 analogue, 6, was synthesized. The IC50 of 6 was 0.7 nM against U937 cells. Compound 6 caused apototsis of U937 cells. CONCLUSIONS: For the first time, a biotinalyted CBI-bearing CC-1065 analogue, 6, was synthesized. The biotinylated 6 can serve as a model compound to explore the usefulness of non-radioactive small molecule anticancer drugs in the pretargeting strategy for cancer imaging and therapy.
منابع مشابه
Synthesis and preliminary cytotoxicity study of a cephalosporin-CC-1065 analogue prodrug
BACKGROUND: Antibody-directed enzyme prodrug therapy (ADEPT) is a promising new approach to deliver anticancer drugs selectively to tumor cells. In this approach, an enzyme is conjugated to a tumor-specific antibody. The antibody selectively localizes the enzyme to the tumor cell surface. Subsequent administration of a prodrug substrate of the enzyme leads to the enzyme-catalyzed release of the...
متن کاملDetermination of the Biological Activity and Structure Activity Relationships of Drugs Based on the Highly Cytotoxic Duocarmycins and CC-1065
The natural antibiotics CC‑1065 and the duocarmycins are highly cytotoxic compounds which however are not suitable for cancer therapy due to their general toxicity. We have developed glycosidic prodrugs of seco-analogues of these antibiotics for a selective cancer therapy using conjugates of glycohydrolases and tumour-selective monoclonal antibodies for the liberation of the drugs from the prod...
متن کاملMechanism of interaction of CC-1065 (NSC 298223) with DNA.
CC-1065 (NSC 298223), a potent new antitumor antibiotic produced by Streptomyces zelensis, interacts strongly with double-stranded DNA and appears to exert its cytotoxic effects through disruption of DNA synthesis. We undertook this study to elucidate the sites and mechanisms of CC-1065 interaction with DNA. The binding of CC-1065 to synthetic and native DNA was examined by differential circula...
متن کاملEffects of U-71,184 and several other CC-1065 analogues on cell survival and cell cycle of Chinese hamster ovary cells.
CC-1065 is a very potent antitumor antibiotic which selectively binds in the minor groove of DNA with alkylation at N-3 of adenine. Since therapeutic doses of CC-1065 caused delayed deaths in mice, analogues were synthesized, some of which had significant antitumor activity. The effects of several of these analogues on inhibition of CHO cell survival, cell progression, and their phase-specific ...
متن کاملDNA damage and differential cytotoxicity produced in human carcinoma cells by CC-1065 analogues, U-73,975 and U-77,779.
U-73,975 (U-73) and U-77,779 (U-77), two analogues of the cyclopropylpyrroloindole antitumor antibiotic CC-1065, are promising novel chemotherapeutic agents which are known to alkylate the N3 position of adenine in a sequence-selective manner. The concentration of U-73 required to produce a 1 log cell kill in 6 human tumor cell lines varied from 20-60 pM. U-77 was more cytotoxic than U-73, with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BMC Chemical Biology
دوره 2 شماره
صفحات -
تاریخ انتشار 2002